Scalable Fabric‐Based Solar Steam Generator

Author:

Li Yaping12,Wang Run1,Zhang Li3,Wang Xiaoyin1,Zhang Kai4,Shou Wan5ORCID,Fan Jie16

Affiliation:

1. School of Textile Science and Engineering Tiangong University 399 West Binshui Road Tianjin 300387 China

2. School of Textile Engineering Henan University of Engineering Zhengzhou Henan 450052 China

3. Nantong Cellulose Fibers Co. Ltd Nantong 226008 China

4. Department of Laboratory Medicine Third Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China

5. Department of Mechanical Engineering University of Arkansas Fayetteville AR 72701 USA

6. Ministry of Education Key Laboratory of Advanced Textile Composite Materials Tiangong University Binshui West Road 399 Xiqing Distinct Tianjin 300387 China

Abstract

AbstractSolar steam generation has emerged as a promising approach to address water scarcity issues globally. However, a few challenges remain, including high cost, limited scalability, and salt accumulation, before this technique can be adopted by the general population. Here, an all‐in‐one photothermal fabric is reported such as a solar steam generator (SSG), consisting of commercial hydrophilic superfine denier polypropylene fiber and water‐repellent expandable polyethylene foam, manufactured via a conventional weaving machine. By tailoring the yarn twist and density, optimized micro‐macro hierarchical channels can be created in the SSG to provide sufficient water supplementation and continuous steam generation. Due to the Marangoni effect introduced by the temperature gradient along the yarns water with high salinity transports to the bulk water, realizing a salt‐rejecting property. As a result, the SSG demonstrates a rapid evaporation rate of 1.408 kg m−2 h−1 and energy efficiency of 92.43% under 1 sun, as well as outstanding stability for desalination of high salinity brine (10 wt% NaCl). Furthermore, this strategy provides a new solution to achieve excellent cost‐effectiveness in clean water production at ≈1700 g h−1 $−1. This work provides a sustainable fabric‐based SSG for practical large‐scale clean water production, and can potentially inspire other textiles‐based water treatment.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3