Machine‐Learning Aided First‐Principles Prediction of Earth‐Abundant Pnictogen Chalcohalide Solid Solutions for Solar‐Cell Devices

Author:

López Cibrán12,Caño Ivan23,Rovira David23,Benítez Pol12,Asensi José Miguel4,Jehl Zacharie23,Tamarit Josep‐Lluís12,Saucedo Edgardo23,Cazorla Claudio12ORCID

Affiliation:

1. Group of Characterization of Materials Departament de Física Universitat Politècnica de Catalunya Campus Diagonal‐Besòs Av. Eduard Maristany 10–14 Barcelona 08019 Spain

2. Research Center in Multiscale Science and Engineering Universitat Politècnica de Catalunya Campus Diagonal‐Besòs Av. Eduard Maristany 10–14 Barcelona 08019 Spain

3. Department of Electronic Engineering Universitat Politècnica de Catalunya Barcelona 08034 Spain

4. Departament de Física Aplicada Universitat de Barcelona Barcelona 08007 Spain

Abstract

AbstractDiscovering novel families of materials composed of earth‐abundant elements and characterized by non‐toxicity, high thermodynamic stability, and simple low‐temperature synthesis processes, is paramount for the advancement of urgently needed energy storage and conversion technologies. Pnictogen chalcohalides, represented by the general formula ABC (A = Bi, Sb; B = S, Se; C = I, Br), emerge as a promising class of energy materials particularly well‐suited for photovoltaic applications. However, the compositional landscape of BixSb1 − xSySe1 − yIzBr1 − z is vast and remains largely unexplored, with traditional experimental and theoretical exploration techniques facing limitations in covering the entire solid‐solution range due to their labor‐intensive and time‐consuming nature. Here, an integrated bottom‐up approach that combines first‐principles calculations, machine learning models, experiments, and device optimizations is introduced to provide a comprehensive fundamental understanding of pnictogen chalcohalides with arbitrary composition and to expedite the design of high‐performance multi‐junction solar cells. The synergistic investigations unveil a broad and continuous spectrum of bandgaps and optical absorption coefficients ranging from 1.2 to 2.1 eV and from 2.5 · 105 to 6.6 · 105 cm−1, respectively, across a wide variety of thermodynamically stable compounds. Additionally, a tandem BiSBr–BiSeI device is identified as an optimal multi‐junction solar cell, exhibiting a maximum short‐circuit current density of 18.65 mA cm−2 under intensity‐matching conditions. The introduced bottom‐up materials design approach may facilitate an unprecedented and rapid translation of basic knowledge into the most demanded solar cell applications.

Funder

Ministerio de Ciencia e Innovación

Ministerio de Ciencia, Innovación y Universidades

Publisher

Wiley

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3