A Homing Peptide Modified Neutrophil Membrane Biomimetic Nanoparticles in Response to ROS/inflammatory Microenvironment for Precise Targeting Treatment of Ischemic Stroke

Author:

Dong Zhufeng12,Tang Lin12,Zhang Yu2,Ma Xiaoyue2,Yin Ying2,Kuang Lei12,Fan Qin1,Wang Bingyi1,Hu Xiaoye1,Yin Tieying12ORCID,Wang Yazhou12ORCID

Affiliation:

1. School of Medicine Chongqing University 131 Yubei Street, Shapingba District Chongqing 400044 China

2. Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University 83 Shabei Street, Shapingba District Chongqing 400030 China

Abstract

AbstractOxidative stress induced by ischemia‐reperfusion causes severe secondary injury in stroke patients. The blood‐brain barrier (BBB) and the challenges in targeting the stroke core hinder the therapeutic effect of drugs. This study introduces a precise biomimetic drug delivery system called SHp‐NM@Edv/RCD (SNM‐NPs), which possesses multiple stepwise targeting capabilities. SNM‐NPs are encapsulated by the neutrophil membranes (NMs) and exhibit a targeting effect (5.16‐fold) on the inflammatory microenvironment. The modification of stroke‐homing peptides (SHp) makes SNM‐NPs target damaged neurons faster, with a targeting efficiency 5.68 times higher than that of β‐cyclodextrins (RCD). Then, RCD encapsulated in SNM‐NPs responds to reactive oxygen species (ROS), leading to the release of edaravone (Edv), scavenges ROS, inhibits neuroinflammation, and reduces neuronal apoptosis by 90%. Mechanistically, SNM‐NPs deliver Edv precisely to the cerebral ischemia‐reperfusion injury (CIRI) site, resulting in the elimination of ROS, a decrease in the number of microglia, an improvement in tubulin expression in neurons, and the inhibition of neuronal apoptosis through Caspase 3 pathway. Preliminary experiments also show that SNM‐NPs exhibit a good safety profile both in intravenous therapy and in vitro cell experiments. As a result, SNM‐NPs hold promise for further development as effective and safe agents for target therapy of CIRI and other diseases.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3