Affiliation:
1. Department of Chemistry and Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
2. Harvard John A. Paulson School of Engineering and Applied Sciences 29 Oxford Street Cambridge MA 02138 USA
Abstract
AbstractA novel iron‐based posolyte redox species are presented for an aqueous redox flow battery, (Tetrakis(2‐pyridylmethyl)ethylenediamine)iron(II) dichloride, which is obtained by a simple synthetic route, shows a high redox potential of 0.788 V versus SHE, and exhibits exceptional aqueous solubility of 1.46 M. Paired with bis(3‐trimethylammonio)propyl viologen tetrachloride at neutral pH, the battery demonstrates an open‐circuit voltage of 1.19 V and delivers good cycling performance, with a capacity fade rate of 0.28% per day and coulombic efficiency of 99.3%. Postmortem chemical and electrochemical analyses of the posolyte species suggest future routes for stabilization of the complex. Among all the iron complexes with a redox potential above 0.4 V versus SHE, this compound exhibits the highest solubility. These results offer valuable insights that can be applied to the development of future posolyte species for sustainable energy storage solutions.
Funder
U.S. Department of Energy
Natural Sciences and Engineering Research Council of Canada
National Science Foundation
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献