Tailoring 3D Printed Micro‐Structured Carbons for Adsorption

Author:

Scott Stuart1ORCID,Chew John1ORCID,Barnard Jonathan1ORCID,Burrows Andrew2ORCID,Smith Martin3ORCID,Tennison Steven4,Perera Semali1ORCID

Affiliation:

1. Department of Chemical Engineering University of Bath Bath BA2 7AY UK

2. Department of Chemistry University of Bath Bath BA2 7AY UK

3. CBR Division Defence Science & Technology Laboratory Porton Down SP4 0JQ Salisbury UK

4. Carbon Tex Ltd. 62 Farleigh Road Addlestone Surrey KT15 3HR UK

Abstract

AbstractThe manufacture of tailored carbon‐based adsorbent structures with exceptionally low‐pressure drops and improved kinetics using stereolithographic 3D printing is presented. Adsorbent structures are printed from commercial resins with square, circular, and hexagonal cross‐sectional microchannels. These structures can reduce energy use by 50–95% compared to conventional carbon‐packed beds. The activated 3D printed carbon achieves Brunauer–Emmett–Teller surface areas over 1000 m2 g−1 and shows outstanding butane adsorption capacities, over twice the capacity of a commercial carbon and a comparable capacity to phenolic‐based carbons. The structures also show excellent uptakes of cyclohexane, up to 0.62 g g−1 in a saturated feed. The introduction of complex axial geometries including spirals and chevrons enable superior adsorption kinetics and premature breakthrough of contaminants at high gas flow rates. These results demonstrate the success of intelligent manufacturing of low‐pressure drop, high‐capacity micro‐structured adsorbents, allowing for the development of gas separation technologies for applications such as greenhouse gas removal and respiratory protection.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3