Mitochondria‐Targeted Polyphenol‐Cysteine Nanoparticles Regulating AMPK‐Mediated Mitochondrial Homeostasis for Enhanced Bone Regeneration

Author:

Yu Shufan1,Du Jing1,Zhang Qun1,Li Zhao1,Ge Shaohua1,Ma Baojin1ORCID

Affiliation:

1. Department of Periodontology & Tissue Engineering School and Hospital of Stomatology Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases Shandong University Jinan Shandong 250012 China

Abstract

AbstractMitochondria are the energy source for basal cell functions as well as for tissue repair and regeneration. Excessive accumulation of reactive oxygen species (ROS) generated by bone tissue injury can cause cell oxidative stress and mitochondrial damage, negatively affecting osteogenic differentiation and tissue repair. However, efficient scavenging of mitochondrial ROS (mtROS) and restoration of mitochondrial homeostasis remain challenging. In this study, mitochondria‐targeted polyphenol/amino acid assembled nanoparticles (denoted as EC NPs) are constructed, which can achieve efficient intracellular ROS scavenging, especially for mtROS, recover the mitochondrial membrane potential, and enhance the inherent antioxidant system by increasing the antioxidase activity and GSH levels, following the re‐establishment of redox homeostasis. The EC NPs promoted AMPK‐mediated mitochondrial biogenesis, thereby providing more energy for osteogenic differentiation. Furthermore, the EC NPs not only recovered the osteogenic potential of the stem cells under oxidative stress but also demonstrated the ability to directly promote osteogenic differentiation by activating the cGMP‐PKG signaling pathway. In vivo experiments showed that the EC NPs significantly enhanced mitochondrial biogenesis and facilitated bone regeneration with a higher bone mass and bone mineral density. Thus, this multifunctional mitochondria‐targeted nanosystem represents a promising therapeutic strategy for bone regeneration based on mitochondrial homeostasis regulation.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3