Double‐Hollow Au@CdS Yolk@Shell Nanostructures as Superior Plasmonic Photocatalysts for Solar Hydrogen Production

Author:

Chen Yi‐An1ORCID,Nakayasu Yuhi2,Lin Yu‐Chang3,Kao Jui‐Cheng14,Hsiao Kai‐Chi5,Le Quang‐Tuyen1,Chang Kao‐Der6,Wu Ming‐Chung5,Chou Jyh‐Pin7,Pao Chun‐Wei4,Chang Tso‐Fu Mark89,Sone Masato89,Chen Chun‐Yi89,Lo Yu‐Chieh1,Lin Yan‐Gu3,Yamakata Akira2ORCID,Hsu Yung‐Jung11011ORCID

Affiliation:

1. Department of Materials Science and Engineering National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan

2. Graduate School of Natural Science and Technology Okayama University Okayama 700–8530 Japan

3. National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan

4. Research Center for Applied Sciences Academia Sinica Taipei 11529 Taiwan

5. Green Technology Research Center Chang Gung University Taoyuan 33302 Taiwan

6. Mechanical and Systems Research Laboratories Industrial Technology Research Institute Hsinchu 31040 Taiwan

7. Department of Physics National Changhua University of Education Changhua 50007 Taiwan

8. Institute of Innovative Research Tokyo Institute of Technology Kanagawa 226–8503 Japan

9. Sumitomo Chemical Next‐Generation Eco‐Friendly Devices Collaborative Research Cluster Kanagawa 226‐8503 Japan

10. Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan

11. International Research Frontiers Initiative Institute of Innovative Research Tokyo Institute of Technology Kanagawa 226–8503 Japan

Abstract

AbstractStructural engineering has proven effective in tailoring the photocatalytic properties of semiconductor nanostructures. In this work, a sophisticated double‐hollow yolk@shell nanostructure composed of a plasmonic, mobile, hollow Au nanosphere (HGN) yolk and a permeable, hollow CdS shell is proposed to achieve remarkable solar hydrogen production. The shell thickness of HGN@CdS is finely adjusted from 7.7, 18.4 to 24.5 nm to investigate its influence on the photocatalytic performance. Compared with pure HGN, pure CdS, a physical mixture of HGN and CdS, and a counterpart single‐hollow cit‐Au@CdS yolk@shell nanostructure, HGN@CdS exhibits superior hydrogen production under visible light illumination (λ = 400–700 nm). The apparent quantum yield of hydrogen production reaches 8.2% at 320 nm, 6.2% at 420 nm, and 4.4% at 660 nm. The plasmon‐enhanced activity at 660 nm is exceptional, surpassing the plasmon‐induced photoactivities of the state‐of‐the‐art plasmonic photocatalysts ever reported. The superiority of HGN@CdS originates from the creation of charge separation state at HGN/CdS heterojunction, the considerably long‐lived hot electrons of plasmonic HGN, the magnified electric field, and the advantageous features of double‐hollow yolk@shell nanostructures. The findings can provide a guideline for the rational design of versatile double‐hollow yolk@shell nanostructures for widespread photocatalytic applications.

Funder

National Science and Technology Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3