Insights Into Janus Interfaces with Ordered Micro/Nanostructures for Low‐Temperature Differential Evaporation

Author:

Sun Bing1,Wu Mengyuan1,Zhao Xuguang1,Wang Lingfeng1,Jia Yuandong1,Yuan Zhijie1,Wu Haojie1,Diao Jibo1,He Gaohong1ORCID,Jiang Xiaobin1ORCID

Affiliation:

1. State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials School of Chemical Engineering Dalian University of Technology Dalian Liaoning 116024 China

Abstract

AbstractLow‐temperature differential evaporation constitutes a promising direction for energy‐saving desalination. Herein, a novel Janus interfacial structure with well‐ordered micro/nanopores is developed. Fabricated Janus interfacial structure can weak the water intermolecular forces and pump water to the hydrophilic–hydrophobic junction. Within well‐ordered nanochannels, the increased curvature of the meniscus increases the ratio of thin water layers, thereby enhancing microscale heat transfer at the heated walls; in addition, the smaller nanopores limit the development of microscale vortices at the liquid–gas interface and prevent back mixing of intermediate water at the interface, which possess the nanoscale effect on intensifying the interfacial evaporation. These effects are validated by theoretical and experimental studies. Optimized Janus (20 nm)95°/25° structure exhibits evaporation fluxes up to 2.4 kg m−2 h−1 at 45 °C (feed side)/25 °C (permeate side, ambient pressure), as the theoretical evaporation enthalpy is only 30% of that for direct evaporation. The unique Janus structure simultaneously inhibits salt accumulation and achieve self‐cleaning, thereby maintaining steady performance during 480 h of continuous desalination and 50 cycles of batch operation. This work highlights a promising structural design strategy for separation materials with specific micro/nanoscopic topologies to achieve high performance thermally driven desalination applications.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3