Anisotropic Interfaces Support the Confined Growth of Magnetic Nanometer‐Sized Heterostructures for Electromagnetic Wave Absorption

Author:

Xu Chunyang1,Luo Kaicheng1,Du Yiqian1,Zhang Huibin1,Lv Xiaowei1,Lv Hualiang2,Zhang Ruixuan3,Zhang Chang3,Zhang Jincang3,Che Renchao13ORCID

Affiliation:

1. Laboratory of Advanced Materials Shanghai Key Lab of Molecular Catalysis and Innovative Materials Academy for Engineering and Technology Fudan University Shanghai 200438 P. R. China

2. Institute of Optoelectronics Fudan University Shanghai 200433 P. R. China

3. Zhejiang Laboratory Hangzhou 311100 P. R. China

Abstract

AbstractThe fabrication of nanometer‐sized magnetic heterostructures with controlled magnetic components and specific interfaces holds great significance in the field of electromagnetic (EM) wave absorption. However, the process of achieving these structures still poses significant challenges. Here, abundant magnetic heterostructures are successfully fabricated by utilizing the surface energy anisotropy differences of the nonasymmetric hammer‐shaped interface to support the nucleation and growth of magnetic heterostructure components while effectively inhibiting their aggregation. Through a confined growth strategy via in situ growth of FeOOH and sequentially precise thermal treatments, dispersion of the heterostructures is achieved at the nanometer scale, while also observing a high degree of chemical stability due to occurrence of a charge‐compensation effect at the interface. Consequently, a series of magnetic heterostructures are obtained via phase translations of FeOOH precursors. The nanometer‐sized heterostructures demonstrate multilevel interfacial polarization effects. Furthermore, the hierarchical core–shell structure of the heterostructures promotes anisotropic polarization absorption. As a result, the multiple interfaces and nanometer‐sized Fe/Fe3O4@SiO2@Fe‐2 heterostructures demonstrate improved EM wave attenuation performance. Remarkably, they achieve an absorption bandwidth of 9 GHz at a thickness of 1.8 mm. A novel avenue is introduced here for investigating the intricate relationship between structure and properties in magnetic heterostructures.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3