Tuning Electrolyte Solvation Structure and CEI Film to Enable Long Lasting FSI‐Based Dual‐Ion Battery

Author:

Zhao Yu1,Xue Kaiming1,Yu Denis Y. W.12ORCID

Affiliation:

1. School of Energy and Environment City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China

2. Center for Green Research on Energy and Environmental Materials (GREEN) National Institute for Materials Science Tsukuba Ibaraki 305‐0044 Japan

Abstract

AbstractDual‐ion battery (DIB) is a promising energy storage system because it can provide high power. However, the stability and rate performance of the battery depend strongly on the type of salt and solvents in the electrolyte. Herein, the use of lithium bis(fluorosulfonyl)imide (LiFSI) is studied, which has better high‐temperature stability, as salt in the DIB and develop a 3 m LiFSI fluoroethylene carbonate/methyl 2,2,2‐trifluoroethyl carbonate (FEC/FEMC) = 3:7 electrolyte, which stabilizes graphite–lithium DIB with 94.1% capacity retention after 2000 cycles at 5C. The DIB also exhibits excellent rate performance with 100.4 mAh g−1 capacity at 30C, with a utilization of 96.3% compared to capacity at 2C. The outstanding electrochemical performance is attributed to the thin cathode electrolyte interface (CEI) layer and fast FSI transport kinetics, confirmed by X‐ray photoelectron spectroscopy and activation energy calculation. Superior cycle and rate performances are also obtained from a graphite–graphite full cell. Though, increasing salt concentration to 5 and 6 m leads to sluggish FSI de‐intercalation reaction and lower capacity, which is attributed to solvent co‐intercalation. The research suggests that the electrolyte plays an important role in ion transport, surface film formation, and stability of DIB.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3