Affiliation:
1. Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials College of Materials Science and Engineering Nanjing Forestry University Nanjing 210037 China
2. College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
3. Institute of Materials Science and Devices School of Materials Science and Engineering Suzhou University of Science and Technology Suzhou 215009 China
Abstract
AbstractThe shortage of freshwater resources has become a major obstacle threatening human development, and directly utilizing solar energy by solar evaporators is emerging as a promising method to produce freshwater from the seawater. Compared to many synthetic polymer‐based evaporators, cellulose‐based evaporators are expected to offer more interesting features benefiting from the renewable feature and abundant reserves of cellulose‐contained naturally occurring materials. First, according to the different fabrication methods, cellulose‐based solar evaporators can be divided into two types, i.e., top‐down utilization (wood‐based) and bottom‐up assembled (cellulose composite‐based), respectively. The different fabrication schemes also bring their own unique advantages, such as the bimodal porous structure of wood‐based evaporators and the artificial interconnection microporous network of cellulose composite‐based evaporators. Subsequently, this review further summarizes the most recent advances and highlights of those cellulose‐based solar evaporators, by focusing on their structural regulation strategies (e.g., drilled channel array, asymmetric wettability structure, delignification, 2D waterway, etc.) and evaporation performance improvements (e.g., salt resistance, high evaporation rate, etc.). Finally, the challenges in this field and potential solutions are also discussed, which are anticipated to provide new opportunities toward the future development of cellulose and other kinds of biomass‐based evaporators.
Funder
National Natural Science Foundation of China
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献