The neglected influence of zinc oxide light‐soaking on stability measurements of inverted organic solar cells

Author:

Günther Marcella1ORCID,Lotfi Soroush2,Rivas Sergio Sánchez1,Blätte Dominic1ORCID,Hofmann Jan P.2ORCID,Bein Thomas1ORCID,Ameri Tayebeh13ORCID

Affiliation:

1. Department of Chemistry and Center for NanoScience (CeNS) Ludwig‐Maximilians‐Universität (LMU) Butenandtstr. 5‐13 81377 Munich Germany

2. Surface Science Laboratory Department of Materials and Earth Sciences Technical University of Darmstadt Otto‐Berndt‐Strasse 3 64287 Darmstadt Germany

3. Institute for Materials and Processes School of Engineering University of Edinburgh Sanderson Building Edinburgh EH9 3FB UK

Abstract

AbstractAlthough zinc oxide (ZnO) is one of the most commonly used materials for electron transport layers in organic solar cells (OSCs), it also comes with disadvantages such as the so‐called light‐soaking issues, i.e., its need for exposure to UV light to reach its full potential in OSCs. Here, the impact of ZnO light‐soaking issues on stability measurements of OSCs is investigated. It is found that in the absence of UV light a reversible degradation occurs, which is independent of the used active layer material and accelerates at higher temperatures but can be undone with a short UV exposure. This reversible aging is attributed to the re‐adsorption of oxygen, which for manufacturing reasons is trapped at the interface of ZnO, even in an oxygen‐free environment. This oxygen can be removed with a UV pretreatment of the ZnO but at the expense of device efficiency and production that has to take place in an oxygen‐free environment. This study establishes that stability measurements of ZnO‐containing OSCs must be performed exclusively with a light source including a UV part since the usage of a simple white light source – as often reported in the literature – can lead to erroneous results.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3