Affiliation:
1. State Key Laboratory of Radio Frequency Heterogeneous Integration School of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518061 China
2. Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
Abstract
AbstractBioelectrode is critical to many biomedical researches. However, traditional materials (typically noble metals) and manufacturing techniques limit the large‐scale production of bioelectrodes. Herein, a fast electrochemical approach is proposed to deposit versatile MXene/polydopamine (PDA) composites on a metalized substrate. PDA coating can improve the adhesion between MXene and the substrate, while MXene provides rough surfaces with unique micro/nanostructure and outstanding electrical/optical/thermal performance. The impedance of the as‐prepared bioelectrode at 1 kHz is down to 8.48 Ω cm2. The corresponding cathodic charge storage capacity (CSCc) and charge injection capacity (CIC) are up to ≈250 and 6.59 mC cm−2 respectively, much superior to that of bare Pt and other conventional material‐based electrodes. The MXene/PDA composites also demonstrate robust stability under continuous electrostimulation for 1 × 108 pulse cycles and 1000 CV cycles. Moreover, MXene/PDA composites show a high and rapid photothermal response. Photoelectrochemical activity is also observed with high photocurrent, ≈40 folds larger than that of bare Pt. The utility of this new electrode in ascorbic acid sensing is demonstrated. Excellent biocompatibility is verified via neuron adhesion test and viability assay.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献