Enhanced Hydrogen Evolution in Porous and Hybrid g‐C3N4/Pt‐PVDF Electrospun Membranes via Piezoelectricity from Water Flow Energy

Author:

Chen Mengmeng1,Hu Neng1,Wang Weijia2,Lei Lin2,Fan Huiqing2,Müller‐Buschbaum Peter3,Zhong Qi13ORCID

Affiliation:

1. Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province Key Laboratory of Advanced Textile Materials & Manufacturing Technology Ministry of Education Zhejiang Sci‐Tech University Hangzhou 310018 China

2. State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University Xi'an 710072 China

3. TUM School of Natural Sciences Department of Physics Chair for Functional Materials Technical University of Munich James‐Franck‐Str. 1 85748 Garching Germany

Abstract

AbstractInspired from seaweed swayed by waves, the enhanced hydrogen evolution is realized in porous and hybrid g‐C3N4/Pt‐PVDF electrospun membranes via piezoelectricity from water flow energy. The membranes are fabricated by dispersing g‐C3N4/Pt into the mixed solution of PVDF and PEO, followed by electrospinning and selective removal of PEO. By changing the PEO amount, the pore size in nanofibers is adjusted. Due to the hydrogen bonding between g‐C3N4/Pt and PVDF, the β phase of PVDF is increased, beneficial for the piezoelectricity performance. When the electrospun membranes are exposed to water flow, an additional potential field is triggered due to the deformation of PVDF. It not only eases the photogeneration of charge carriers from g‐C3N4/Pt but also hinders their recombination. The prolonged lifetime significantly improves the photocatalytic water splitting of g‐C3N4/Pt under visible light. The hydrogen evolution in the electrospun membranes (PVDF to PEO = 4:1) is profoundly improved to 9 278 µmol h−1 g−1, almost doubled to the pure g‐C3N4/Pt nanosheets (5 220 µmol h−1 g−1). Therefore, the seaweed‐inspired electrospun membrane is a promising strategy for the efficiently photocatalytic water splitting via g‐C3N4 in an aqueous environment, such as a natural sea and lake, by the piezoelectricity gained from the water flow energy.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3