Enhanced Penetration and Retention of CuS‐Based Nanosystem Through NIR Light and In Situ Enzyme Response for Improved Tumor Therapy

Author:

Gao Fangli1,Zhu Liang2,Jiang Liting1,Zhang Jie1,Ji Shenglu3,Gao Weihua1,Ma Guanglei2,Chang Yi1,Ma Xiaoming2,Guo Yuming1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China

2. Key Laboratory of Green Chemical Media and Reactions Ministry of Education Henan Normal University Xinxiang Henan 453007 China

3. The Key Laboratory of Biomedical Material School of Life Science and Technology Xinxiang Medical University Xinxiang 453003 China

Abstract

AbstractThe efficient way to increase the therapeutic efficacy of nanomedicines is by encouraging the penetration and enhancing the retention of nanoparticles at the tumor site. However, it is a serious dilemma that small nanoparticles can penetrate deep into the tumor tissue but easily be cleared into the surrounding tissues. In order to solve this dilemma, a smart nanosystem is created to address this problem, ensuring both the effective penetration of tiny nanoparticles (NPs) and their appropriate retention at the tumor site. CuS NPs that is modified with peptides are prepared facilely, and can aggregate in situ through the intermolecular crosslinking reaction catalyzed by the transglutaminase (TGase) abundantly expressed at the tumor site, resulting in an outstanding photothermal effect for tumor therapy. Upon NIR irradiation, the photothermal effect of CuS‐K and CuS‐Q induced the disintegration of liposomes and prompted the release of CuS‐K, CuS‐Q, and indocyanine green (ICG). Simultaneously, CuS‐K and CuS‐Q aggregated under the catalysis of TGase after being internalized by tumor cells to enhance photothermal therapy. The current study provides valuable inspiration to design nanomedicines with prolonged circulation time in the blood system, better penetration, and retention at the tumor site, and multimodal tumor therapy to achieve the desired therapeutic efficacy.

Funder

National Natural Science Foundation of China

Higher Education Discipline Innovation Project

Foundation of Henan Educational Committee

Science and Technology Innovation Talents in Universities of Henan Province

Natural Science Foundation of Henan Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3