Skin‐Like Transparent, High Resilience, Low Hysteresis, Fatigue‐Resistant Cellulose‐Based Eutectogel for Self‐Powered E‐Skin and Human–Machine Interaction

Author:

Lu Chuanwei1,Wang Xinyu1,Shen Yi1,Xu Shijian1,Huang Caoxing1,Wang Chunpeng2,Xie Haijiao3,Wang Jifu2ORCID,Yong Qiang1,Chu Fuxiang2

Affiliation:

1. Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering Nanjing Forestry University Nanjing 210037 China

2. Institute of Chemical Industry of Forest Products Chinese Academy of Forestry (CAF) Jiangsu Province No 16 Suojin Wucun Nanjing 210042 China

3. Hangzhou Yanqu Information Technology Co. Ltd. Hangzhou Hangzhou 310003 China

Abstract

AbstractArtificial electronic skin (E‐skin), a class of promising materials mimicking the physical‐chemical and sensory performance of the human skin, has gained extensive interest in the field of human health‐monitoring and robotic skins. However, developing E‐skin simultaneously achieving high resilience, hysteresis‐free, and absent external power is always a formidable challenge. Herein, a liquid‐free eutectic gel‐based self‐powered E‐skin with high resilience, fatigue resistance, and conductivity is prepared by introducing hydroxypropyl cellulose (HPC) into metal salt‐based deep eutectic solvents (MDES). The unique structural design of cellulose‐anchored permanent entangled poly(acrylic acid) (PAA) chain, in combination with rapid broken/reconstruction of the dense dynamic sacrificial bonds, realizes the fabrication of high‐elastic E‐skin with negligible hysteresis. This further demonstrates the promising practical application of the cellulose‐based eutectogel with high transmittance (92%), high conductivity (36.6 mS m−1), and high resilience (98.1%), and excellent environment stability in robust triboelectric nanogenerator for energy harvesting and high resilience, self‐powered E‐skin for human health‐caring and human‐machine interaction.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3