Polar Organic Molecules Inserted in Vanadium Oxide with Enhanced Reaction Kinetics for Promoting Aqueous Zinc‐Ion Storage

Author:

Cheng Xiaojun1,Xiang Zhengpeng1,Yang Chen1,Li Youyi1,Wang Lei1ORCID,Zhang Qi1

Affiliation:

1. International Cooperation United Laboratory of Eco‐chemical Engineering and Green Manufacturing Technology Innovation Center of Battery Safety and Energy Storage Technology College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao 266042 China

Abstract

AbstractThe Zn2+ sluggish kinetics resulting from high desolvation barriers of Zn(H2O)62+ in the electrode/electrolyte interface restricts the practical application of Zn‐ion batteries (ZIBs). Herein, ethylene glycol (EG) molecules are inserted into V2O5·3H2O to form V‐EG nanoarray structures to improve the Zn2+ diffusion rate. Unlike most efforts focused on improving interlayer spacing and structural stability, the influence of EG on the Zn2+ desolvation and Zn2+ storage process are the main goals. Based on experimental and theoretical analysis, EG molecules are confirmed to participate in the reshaping of V2O5·3H2O morphology and Zn2+ solvation structure, which is beneficial to enhance the reaction kinetics and specific capacity. The polar group of the EG molecule leads it anchored in the VO skeleton and decreases the desolvation energy, while the steric hindrance of the low polarity group liberalizes Zn2+ transfer reversibly in the VO skeleton. Therefore, V‐EG delivers a higher ion diffusion coefficient and lower kinetic barrier. As expected, V‐EG exhibits a high specific capacity of 553 mA h g−1 at 0.3 A g−1 and a long cycle life of 10 000 cycles at 20 A g−1. This work provides a strategy to decrease the desolvation energy of Zn2+ in the interface of cathode materials toward advanced ZIBs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3