Scavenging Energy and Information through Dynamically Regulating the Electrical Double Layer

Author:

Li Xiang12,Wang Zhong Lin1345,Wei Di16ORCID

Affiliation:

1. Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P. R. China

2. School of Nanoscience and Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China

3. Beijing Key Laboratory of Micro‐Nano Energy and Sensor Center for High‐Entropy Energy and Systems Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P. R. China

4. Guangzhou Institute of Blue Energy Knowledge City, Huangpu District Guangzhou 510555 P. R. China

5. Georgia Institute of Technology Atlanta GA 30332‐0245 USA

6. Centre for Photonic Devices and Sensors University of Cambridge 9 JJ Thomson Avenue Cambridge CB3 0FA UK

Abstract

AbstractThe electrical double layer (EDL) between solids and liquids serves as the primary interface for ionic‐electronic coupling and is pivotal in nanoscale phenomena, governing electric field effects, ion transport, surface interactions, etc. Dynamically regulating the EDL through mechanical or electrostatic methods can influence charge carrier behavior, thereby impacting energy scavenging and storage processes. This regulation enabled efficient energy scavenging by governing ionic migration and optimizing charge carrier concentration at the interface, presenting a novel avenue to achieve efficient energy and information flow. Here, various scavenging energy and information devices through dynamically regulating the EDL are systematically reviewed. They are classified into three groups by regulating the distribution and movement of charge carriers throughout the entire EDL, diffuse layer, and Debye length range. The review provided a comprehensive overview of the operating principles, influencing factors, output characteristics, and typical applications, along with a discussion on future challenges. This holistic examination offers researchers valuable insights for evaluating their applicability in various scenarios.

Funder

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3