Dual Active Sites Engineering on Sea Urchin‐Like CoNiS Hollow Nanosphere for Stabilizing Oxygen Electrocatalysis via a Template‐Free Vulcanization Strategy

Author:

Liu Jin1,Meng Xin1,Xie Jiahao1,Liu Bin1,Tang Bo2,Wang Rongyue1,Wang Cheng3,Gu Peng1,Song Yidong1,Huo Sichen1,Zou Jinlong1ORCID

Affiliation:

1. Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P.R. China

2. Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control Faculty of Environmental Science & Engineering Kunming University of Science & Technology Kunming 650500 P.R. China

3. School of Chemical Engineering and Light Industry Guangdong University of Technology No. 100, Huanxi Road of Guangzhou University, Panyu District Guangzhou 510006 P.R. China

Abstract

AbstractManipulating electronic structure and defects is crucial to achieve on‐demand functionalities of bimetallic sulfide catalysts for oxygen reduction/evolution reactions (ORR/OER). Here, via a vulcanization strategy, defects‐abundant NiCo2S4 needles obtained from sea urchin‐like NiCo2O4 are anchored on surface of hollow carbon‐sphere (NiCo2S4/HCS). NiCo2S4 nanoneedles (≈7.5 nm) are radially grown on shell of HCS with a cavity (254.5 m2 g−1), and their surface becomes rougher after vulcanization due to anion exchange reaction. As‐marked NiCo2S4/HCS‐3 exhibits better ORR activity (half‐wave potential of 0.89 V) and methanol tolerance than Pt/C (0.86 V). NiCo2S4/HCS‐3 shows a lower OER overpotential (310 mV) than RuO2 and retains 90.9% of initial activity after 9 h. Notably, zinc–air battery with NiCo2S4/HCS‐3 reveals highly‐stable charging/discharging voltages of 2.11/1.16 V with a negligible fading for 200 h. NiCo2S4 grown on outer/inner surfaces of HCS expands spatial distribution of active sites to enhance reactants‐electrode contact and charge transfer. Theoretical calculation shows that Co‐site with an electronic state near Fermi energy level is chiefly‐responsible for ORR, while Ni‐site mainly affords high OER activity. Bader charge analyses reveal that S doping increases the charge density and redox active sites in NiCo2S4. It sheds light on the understanding of electrocatalytic mechanisms on bimetallic sulfides for electronic device.

Funder

National Natural Science Foundation of China

Harbin Institute of Technology

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3