An Ultra‐Smooth rGO Nano‐Thin Film from a Homogeneous Thin Liquid Film Confined by a Conical Fiber Array: Toward the Highly Sensitive Pressure Sensor

Author:

Tang Zhongxue1,Meng Lili2,Zhang Min2,Shi Zhongyu1,Zhang Kejie1,Qin Ji1,Jiang Lei12,Liu Huan1ORCID

Affiliation:

1. Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University No. 37, Xueyuan Road, Haidian Beijing 100191 P. R. China

2. International Research Institute for Multidisciplinary Science Beihang University No. 37, Xueyuan Road, Haidian Beijing 100191 P. R. China

Abstract

AbstractReduced graphene oxide (rGO) thin films have demonstrated various advantages in flexible electronics. So far, solution processes are widely used for making rGO thin films for their mild operation conditions and low cost. However, wrinkles are frequently formed due to the capillary contraction during drying, which severely deteriorates the conductivity and the transparency of rGO thin films. Here, an ultra‐smooth rGO nano‐thin film, featuring wrinkle‐free and a rather low surface roughness of 1.38 nm is developed, which is attributable to a steady and homogeneous thin liquid film confined by a conical fiber array. The thin liquid film facilitates both in‐plane stacking of nanosheets and reducing the buried solvent under nanosheets. Notably, with the capillary flow replenishing the tri‐phase contact line evaporation, a semi‐dry film near the tri‐phase contact line is produced, that enables the force equilibrium of multi‐directional capillary forces on dispersed nanosheets for depositing a wrinkle‐free nanofilm. The as‐prepared rGO nanofilm gives a low sheet resistance of 8.3 kΩ sq−1 and a high transmittance of 91.9%, showing better performances than other reported rGO nanofilms. On this basis, it is demonstrated that a high‐sensitive pressure sensor with a detection limit as low as 0.02 Pa, highlighting the solution‐processed innovative ultra‐smooth 2D nanomaterial thin films, and devices.

Funder

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3