Reconciling Mass Loading and Gravimetric Performance of MnO2 Cathodes by 3D‐Printed Carbon Structures for Zinc‐Ion Batteries

Author:

Yang Hao1,Wan Yi1,Sun Kang2,Zhang Mengdi1,Wang Chongze1,He Zhengqiu1,Li Qiang3,Wang Ning1,Zhang Yunlong1,Hu Han1ORCID,Wu Mingbo1ORCID

Affiliation:

1. State Key Laboratory of Heavy Oil Processing Institute of New Energy College of Chemistry and Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China

2. Institute of Chemical Industry of Forest Products Chinese Academy of Forestry Nanjing 210042 P. R. China

3. College of Physics University‐Industry Joint Center for Ocean Observation and Broadband Communication Qingdao University Qingdao 266071 P. R. China

Abstract

AbstractTo promote the real application of zinc‐ion batteries (ZIBs), reconciling the high mass loading and gravimetric performance of MnO2 electrodes is of paramount importance. Herein, the rational regulation of 3D‐printed carbon microlattices (3DP CMs) enabling an ultrathick MnO2 electrode with well‐maintained gravimetric capacities is demonstrated. The 3DP CMs made of graphene and carbon nanotubes (CNTs) are fabricated by direct ink 3D printing and subsequent high‐temperature annealing. 3D printing enables a periodic structure of 3DP CMs, while the thermal annealing contributes to high conductivity and defective surfaces. Due to these structural merits, uniform electrical field distribution and facilitated MnO2 deposition over the 3DP CMs are permitted. The optimal electrode with MnO2 loaded on the 3DP CMs can achieve a record‐high specific capacity of 282.8 mAh g−1 even at a high mass loading of 28.4 mg cm−2 and high ion transfer dynamics, which reconciles the loading mass and gravimetric performance. As a result, the aqueous ZIBs based on the 3DP CMs loaded MnO2 afford an outstanding performance superior to most of the previous reports. This study reveals the essential role of interaction between active materials and current collectors, providing an alternative strategy for designing high‐performance energy storage devices.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3