Synergistic Enhancement of Electromagnetic Wave Absorption and Corrosion Resistance Properties of High Entropy Alloy Through Lattice Distortion Engineering

Author:

Qiu Zhengrong1,Liu Xiaoyan1,Yang Tianyue1,Wang Jianbin1,Wang Yang1,Ma Wenle1,Huang Yi12ORCID

Affiliation:

1. School of Materials Science and Engineering, National Institute for Advanced Materials Nankai University Tianjin 300350 China

2. Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300350 China

Abstract

AbstractHigh entropy alloys (HEAs) are promising electromagnetic wave absorption (EMA) materials due to its designable crystal structure, variable electromagnetic properties, and excellent corrosion resistance. However, the impedance mismatch owing to the high electric and dielectric conductivity severely hinders the application of HEAs in the field of EMA. Herein, the lattice distortion of FeCoNiCu HEA is manipulated accurately by doping and annealing strategies to tailor the EMA properties. Significant lattice distortion is observed in the FeCoNiCuC0.37, which leads to a decrease in the electrical conductivity and the creation of abundant dipoles. Owing to the optimal impedance matching and boosted polarization loss, the FeCoNiCuC0.37 delivers a minimal reflection loss of −65.4 dB accompanied by an effective absorption bandwidth (EAB) of 6.81 GHz. After annealing at 200 °C, the EAB of the FeCoNiCuC0.37 is further increased to 7.99 GHz at 1.95 mm, which is better than that of most HEA‐based EMA absorbers reported so far. Moreover, it demonstrates excellent corrosion resistance owing to the more tortuous diffusion path of corrosive medium origin from lattice distortion. Thus, the study provides a new insight into designing high performance HEA‐based EMA materials with superior anti‐corrosion property by lattice distortion engineering.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Higher Education Discipline Innovation Project

Fundamental Research Funds for the Central Universities

Nankai University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3