Affiliation:
1. Nanotechnology Center School of Fashion and Textiles The Hong Kong Polytechnic University Kowloon Hong Kong 999077 China
2. College of Bioresources Chemical & Materials Engineering Shaanxi University of Science & Technology Xi'an 710021 China
3. National Engineering Laboratory for Modern Silk College of Textile and Clothing Engineering Soochow University Suzhou 215123 China
Abstract
AbstractThe rewritable wearables based on photochromism have emerged as attractive candidates in inkless printing applications. Among various photochromic materials, polyoxometalates have great potential for rewritable wearables, with major advantages in fast response upon UV irradiation, long‐term photochemical stability, and excellent fatigue resistance. However, the development of rewritable wearables based on polyoxometalates is limited by low combining fastness, weak stability, and poor scalability. Here, a scalable strategy is reported to fabricate an ideal rewritable wearable based on fundamental charge balance mechanism. The pristine cotton substrate is grafted by cationic polymer brushes to incorporate photochromic phosphomolybdic acid (PMoA) anions through electrostatic attraction, and then the cationic surfactants with alkyl chains are introduced to encapsulate the PMoA anions to achieve charge balance subsequently. The resultant rewritable wearables display the long‐awaited properties, such as high color contrast, favorable reversibility (>10 cycles), long color retention (>15 days) and high stability against detergent and sweat (pH 6.5–8.0) during repeated washing (50 cycles) and wearing. As a demonstration, a rewritable T‐shirt is scalably fabricated, and excellent antibacterial activity and biocompatibility are demonstrated as well, which is expected to be a sustainable solution for regular fabric printing in household products and public display.
Funder
Innovation and Technology Commission - Hong Kong