Bimetallic UiO‐66(Zr/Ti)‐Ionic Liquid Grafted Fillers with Intensified Lewis Acidity for High‐Performance Composite Solid Electrolytes

Author:

Ho Jeong‐Won1,Choi Jongin2,Kim Dong Geon3,Ha Chaeyeon1,Koo Jin Kyo1,Nam Myeong Gyun4,Kim Jihoon4,Lee Jun Hyuk4,Kim Minjun1,Moon Myoung‐Woon5,Park Moon Jeong6,Kim Young‐Jun1,Myung Chang Woo3,Lee Minjae2,Yoo Pil J.1457ORCID

Affiliation:

1. SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University (SKKU) Suwon 16419 Republic of Korea

2. Department of Chemistry Kunsan National University Kunsan 54150 Republic of Korea

3. Department of Energy Science Sungkyunkwan University (SKKU) Suwon 16419 Republic of Korea

4. School of Chemical Engineering Sungkyunkwan University (SKKU) Suwon 16419 Republic of Korea

5. Korea Institute of Science and Technology ‐ Sungkyunkwan University Carbon‐Neutral Research Center Suwon 16419 Republic of Korea

6. Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea

7. SKKU Institute of Energy Science and Technology (SIEST) Sungkyunkwan University (SKKU) Suwon 16419 Republic of Korea

Abstract

AbstractEnhancing the incorporation of highly accessible Lewis acid sites on fillers is crucial for achieving exceptional electrochemical performances in composite solid electrolytes (CSEs). Typically, they can provide a vital role in improving CSEs performance by interacting with lithium salt anions and the polymer matrix through Lewis acid–base interactions. To address this technological need, in this work, a novel filler of bimetallic UiO‐66(Zr/Ti)‐ionic liquid grafted composite (BUIL) is developed to enhance its inherent electrochemical properties. The bimetallic structure, which introduces structural defects, along with the grafted ionic liquid, abundantly creates accessible Lewis acid sites. This modification of the intrinsic Lewis acidity results in a remarkable enhancement of CSEs performances. The incorporation of BUIL in CSEs leads to a significant increase in ionic conductivity (0.458 mS cm−1) and lithium‐ion transference number (0.668) at 30 °C. Furthermore, LiFePO4/CSEs/Li cells demonstrate a high specific capacity of 148.5 mAh g−1 at a current density of 1 C, which is stably maintained over 880 cycles. Overall, the innovative synthetic approach in producing multifunctional fillers for CSEs shows strong potential for enhancing the performance of advanced lithium metal batteries.

Funder

National Research Foundation

Korea Institute of Science and Technology Information

Ministry of Trade, Industry and Energy

Ministry of Science and ICT, South Korea

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3