Physio‐Electrochemically Durable Dry‐Processed Solid‐State Electrolyte Films for All‐Solid‐State Batteries

Author:

Lee Dong Ju1ORCID,Jang Jihyun12,Lee Jung‐Pil3,Wu Junlin4,Chen Yu‐Ting4,Holoubek John1,Yu Kunpeng5,Ham So‐Yeon4,Jeon Yuju1,Kim Tae‐Hee1,Lee Jeong Beom3,Song Min‐Sang3,Meng Ying Shirley1467,Chen Zheng1457ORCID

Affiliation:

1. Department of NanoEngineering University of California, San Diego La Jolla CA 92093 USA

2. Department of Chemistry Sogang University 35 Baekbeom‐ro, Mapo‐gu Seoul 04107 Republic of South Korea

3. LG Energy Solution, Ltd. LG Science Park, Magokjungang 10‐ro, Gangseo‐gu Seoul 07796 Republic of South Korea

4. Program of Materials Science and Engineering University of California, San Diego La Jolla CA 92093 USA

5. Program of Chemical Engineering University of California, San Diego La Jolla CA 92093 USA

6. Pritzker School of Molecular Engineering University of Chicago Chicago IL 60637 USA

7. Sustainable Power and Energy Center University of California, San Diego La Jolla CA 92093 USA

Abstract

AbstractThe dry process is a promising fabrication method for all‐solid‐state batteries (ASSBs) to eliminate energy‐intense drying and solvent recovery steps and to prevent degradation of solid‐state electrolytes (SSEs) in the wet process. While previous studies have utilized the dry process to enable thin SSE films, systematic studies on their fabrication, physical and electrochemical properties, and electrochemical performance are unprecedented. Here, different fabrication parameters are studied to understand polytetrafluoroethylene (PTFE) binder fibrillation and its impact on the physio‐electrochemical properties of SSE films, as well as the cycling stability of ASSBs resulting from such SSEs. A counter‐balancing relation between the physio‐electrochemical properties and cycling stability is observed, which is due to the propagating behavior of PTFE reduction (both chemically and electrochemically) through the fibrillation network, resulting in cell failure from current leakage and ion blockage. By controlling PTFE fibrillation, a bilayer configuration of SSE film to enable physio‐electrochemically durable SSE film for both good cycling stability and charge storage capability of ASSBs is demonstrated.

Funder

National Science Foundation

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3