Oleogel Microsphere‐Based Composite Protective Coatings with Room‐Temperature Self‐Healing Enabled by a “Soft + Hard” Hybrid Architecture

Author:

Cui Jincan1,Bao Yanyang1,Dai Qibin1,Li Fuping1,Wang Heng1,Liu Yu1,Cao Fengli2,Li Jing3ORCID

Affiliation:

1. School of Mechanical Engineering Nantong University Nantong 226019 China

2. Nantong Zhenhua Heavy Equipment Manufacturing Nantong 226010 China

3. School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China

Abstract

AbstractIntrinsically self‐healing coatings are compelling candidates for highly reliable anti‐corrosion technologies because of their easy implementation, low cost, and repeatable self‐healing. However, most of these coatings require intervention to initiate healing due to the locking of their chain segments under ambient conditions (to provide sufficient mechanical strength). Herein, a “soft + hard” hybrid architecture strategy of preparing oleogel‐based protective coatings with room‐temperature and repeatable self‐healing is proposed by embedding “soft” self‐healing and viscoelastic oleogel microspheres (OMs) in “hard” waterborne epoxy matrix. Such a decoupled design affords both instantaneous healing without external stimuli (crack narrowing within 10 min and protection recovered within 5 h) and good mechanical properties (improved wear resistance with an 80% reduction in friction coefficient, a 63% reduction in wear volume, as well as a maintained adhesion strength of 96%). The slippery and hydrophobic OMs also bring anti‐biofouling, interfacial water repellency, and inhibitor loading‐release features, leading to coatings with superior corrosion protection (>1010 Ω cm2 impedance modulus throughout 110 d) rather than just their self‐healing. This work demonstrates a feasible approach to integrating room‐temperature repeatable self‐healing and sufficient mechanical strength in future coating design.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Shanghai Municipal Education Commission

Natural Science Research of Jiangsu Higher Education Institutions of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3