Absolutely‐Zero‐Expansion Behavior Enables Ultra‐Long Life for Stationary Energy Storage

Author:

Ou Yinjun12,Yang Liting1,Gao Jiazhe2,Li Songjie2,Liu Xuehua2,Cheng Yifeng3,Zhang Jincang3,Wu Limin4,Lin Chunfu12,Che Renchao13ORCID

Affiliation:

1. Laboratory of Advanced Materials Shanghai Key Lab of Molecular Catalysis and Innovative Materials Academy for Engineering & Technology Fudan University Shanghai 200438 P. R. China

2. Institute of Materials for Energy and Environment School of Materials Science and Engineering Qingdao University Qingdao 266071 China

3. Zhejiang Laboratory Hangzhou 311100 China

4. Inner Mongolia University Hohhot 010021 China

Abstract

AbstractUltra‐long‐life (at least 10 000 cycles) lithium‐ion batteries are very effective for stationary energy‐storage applications. However, even “zero‐strain” materials with small unit‐cell‐volume changes of <1% cannot last for ultra‐long cycles due to gradually accumulated intracrystal strain/stress. Here, Li[Li0.2Cr0.4Ti1.4]O4 is explored as the first absolutely‐zero‐expansion material with unit‐cell‐volume variations of zero during Li+ storage. Its absolutely‐zero‐expansion mechanism is intensively studied, revealing that 16c‐octahedron shrinkage fully offsets 16d‐octahedron expansion through reversible O2− movement. It delivers better cycling stability than, as far as  we  know, all electrochemical energy‐storage materials previously reported. Its capacity retention at 10 C and 1.0 mg cm−2 after 17 000 cycles reaches 91.5%. When the active‐material loading significantly increases to 6.4 mg cm−2, its capacity retention at 5 C after 500 cycles reaches 95.7%. At an elevated temperature of 45 °C, it not only keeps excellent cycling stability but also exhibits significantly enhanced rate capability. Therefore, Li[Li0.2Cr0.4Ti1.4]O4 is especially suitable for stationary energy storage.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3