Synergy of Ni Nanoclusters and Single Atom Site: Size Effect on the Performance of Electrochemical CO2 Reduction Reaction and Rechargeable Zn−CO2 Batteries

Author:

Miao Kanghua1,Qin Jundi1,Yang Jun2,Kang Xiongwu1ORCID

Affiliation:

1. New Energy Research Institute School of Environment and Energy South China University of Technology Higher Education Mega Center 382 East Waihuan Road Guangzhou 510006 China

2. School of Chemical Engineering Guangdong University of Petrochemical Technology Maoming 525000 China

Abstract

AbstractThe design of bifunctional electrocatalysts toward reduction reaction of carbon dioxide (ECO2RR) and oxygen evolution reaction (OER) in aqueous rechargeable Zn─CO2 batteries (ZABs) still poses a significant challenge. Herein, Ni clusters (Nix) of 0.5 and 0.8 nm in diameter coupled with single Ni site (Ni−N4−C), denoted as Ni−N4/Ni5 and Ni−N4/Ni8, respectively, are synthesized and the size effect of Ni nanoclusters are studied. Ni−N4/Ni5 exhibits an ≈100% Faradaic efficiency (FECO) toward ECO2RR for CO from −0.4 to −0.8 V versus the reversible hydrogen electrode, superior to that of Ni−N4−C (FECO = 55.0%) and Ni−N4/Ni8 (FECO = 80.0%). The OER performance of Ni−N4/Ni5 and Ni−N4/Ni8 are superior or comparable to that of commercial RuO2 but outperform that of Ni−N4−C. Theoretical calculation indicates that *COOH of ECO2RR intermediates bond synergistically with Nix clusters and Ni−N4−C single atom site, promoting the activation of CO2 and reducing the energy barrier of the potential determining step of ECO2RR. Such effect is strongly size‐dependent and larger Nix nanoclusters result in too strong binding of *COOH intermediates, impede the formation of *CO. As a bifunctional cathode electrocatalyst of rechargeable alkaline aqueous ZABs, Ni−N4/Ni5 exhibits a peak power density of 11.7 mW cm−2 and cycling durability over 1200 cycles and 420 h.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3