Vacuum Thermal Treatment for Achieving Macroscale Superlubricity by Nanodiamond and Hexagonal Boron Nitride on H‐DLC Film Surfaces in Dry Nitrogen

Author:

Huang Peng1,Chen Xinchun1ORCID,Qi Wei2,Tian Jisen1,Xu Jianxun3,Wang Kai1,Deng Wenli1,Zhang Chenhui1,Luo Jianbin1

Affiliation:

1. State Key Laboratory of Tribology in Advanced Equipment Tsinghua University Beijing 100084 China

2. Jihua Laboratory Foshan 528000 China

3. Key Laboratory of Power Station Energy Transfer Conversion and System Ministry of Education North China Electric Power University Beijing 102206 China

Abstract

AbstractHydrogenated diamond‐like carbon (H‐DLC) films are limited by their poor thermal stability, which significantly affects the tribological applications and needs improvement. Accordingly, nanodiamond (ND) and hexagonal boron nitride (h‐BN) are used to address this issue. When the H‐DLC surface is deposited using ND+h‐BN mixture with mass ratio of 1:1 and a concentration of 0.1 mg mL−1 and vacuum‐heated at 200 °C and 1 × 10−5 Pa, a superlow friction coefficient of 0.0015 can be obtained, with a reduction of 98.33% as compared to pure H‐DLC. Correspondingly, the wear rates of wear scar and wear track decreased by 81.95% and 24.83%, respectively. High vacuum thermal treatment can purify the adsorbed species on the surfaces of ND and h‐BN, and produce newly‐exposed dangling bonds. Simultaneously, new bonds of C‐N are formed between ND and h‐BN, and the nanoparticles adhere together to form a polymer‐like structure under friction. Furthermore, the ND can support h‐BN and reduce its agglomeration. Under the action of tribochemical reaction, the layer spacing of hexagonal boron nitride is increased to obtain a better shear slip. The combination of these factors resulted in ultra‐low friction. This study paved the way for developing functional anti‐friction additives for durable and high‐performance lubrication.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Beijing Municipal Natural Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3