Affiliation:
1. Department of Orthopaedic Surgery Zhongshan Hospital Fudan University Shanghai 200032 China
2. School of Mechanical Medical and Process Engineering Centre for Biomedical Technologies Queensland University of Technology Brisbane 4059 Australia
3. Australia‐China Centre for Tissue Engineering and Regenerative Medicine Queensland University of Technology Brisbane 4059 Australia
4. School of Medicine and Dentistry & Menzies Health Institute Queensland Griffith University Gold Coast 4222 Australia
Abstract
AbstractCritical‐sized bone defects, especially for irregular shapes, remain a significant challenge in orthopedics. Although various biomaterials are developed for bone regeneration, their application for repair of irregular bone defects is limited by the complicated preparation procedures involved, and their lack of shape‐adaptive capacity, physiological adhesion, and potent osteogenic bioactivity. In the present study, a simple strategy of precipitation by introducing tannic acid (TA) with abundant phenolic hydroxyl groups and Fe3O4 nanoparticles, as metal‐phenolic networks (MPN), is developed to easily prepare a fast gelling, shape‐adaptive, and highly adhesive regenerated silk fibroin (RSF)/TA/Fe3O4 hydrogel system that can respond to a static magnetic field (SMF). The RSF/TA/Fe3O4 hydrogel exhibits sufficient adhesion in biological microenvironments and good osteogenic effect in vitro and in vivo, under an external SMF, and thus, can be applied to repair critical‐sized bone defects. Moreover, bioinformatics analysis reveals that the synergistic mechanism of Fe3O4 NPs and SMF on osteogenic effects can be promotion of osteoblast differentiation via activation of the cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG)/extracellular signal‐regulated kinase (ERK) signaling pathway. This study provides a promising biomaterial with potential clinical application for the future treatment of (irregular) critical‐sized bone defects.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shanghai
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献