Buried Interface Modulation via Preferential Crystallization in All‐Inorganic Perovskite Solar Cells: The Case of Multifunctional Ti3C2Tx

Author:

Wang Mengqi12,Wu Wenwen12,Liu Yulin12,Yuan Songyang12,Tian Dehua3,Zhang Cuili4,Ma Zhipeng12,Deng Jiahuan12,Chen Jianhui4,Lou Zaizhu35,Li Wenzhe12ORCID,Fan Jiandong125ORCID

Affiliation:

1. Institute of New Energy Technology Department of Electronic Engineering College of Information Science and Technology Jinan University Guangzhou 510631 China

2. Key Laboratory of New Semiconductors and Devices of Guangdong Higher Education Institutes Jinan University Guangzhou 510631 China

3. Guangdong Provincial Key Laboratory of Nanophotonic Manipulation Institute of Nanophotonics Jinan University Guangzhou 511443 China

4. College of Physics Science and Technology Hebei University Baoding 071002 China

5. State Key Laboratory of Crystal Materials Shandong University Jinan 250100 China

Abstract

AbstractDespite inorganic CsPbI3−xBrx perovskite solar cells (PSCs) being promising in thermal stability, the perovskite degradation and severe nonradiative recombination at the interface hamper their further development. Herein, the typical MXene material, that is, Ti3C2Tx, is employed to be the buried interface prior to the perovskite absorber layer in the device, which multi‐functionalizes the as‐prepared electron‐transfer layers by means of both fascinating preferential crystallization of perovskite and/or accelerating the charge extraction with respect to an ideal energy‐level alignment and suppressed trap states. Accordingly, the power conversion efficiency of the modified PSC device is substantially enhanced by as high as 19.56% in comparison to their counterparts with only the pristine CsPbI3−xBrx active layer. More importantly, MXene modification is favorable to improve the wettability of perovskite precursor solution with enhanced grain size and crystallinity, thereby increasing the UV long‐term stability of solar cells. This work provides a new paradigm toward alleviating the severe nonradiative recombination at the interface in the device whilst enhancing the long‐term stability via the preferential crystallization process.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3