Photochargeable Semiconductors: in “Dark Photocatalysis” and Beyond

Author:

Rogolino Andrea1,Savateev Oleksandr2ORCID

Affiliation:

1. Cavendish Laboratory University of Cambridge JJ Thomson Ave Cambridge CB3 0HE UK

2. Department of Colloid Chemistry Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany

Abstract

AbstractPhotochargeable semiconductors enable energy harvesting and storage in a single material. Charges separated upon absorption of photons can accumulate in highly energetic trap states if morphology, size, and chemical composition are appropriately chosen. For example, electrons can survive for several hours if hole scavengers are used to prevent their recombination with photogenerated holes, and their negative charge is balanced by positive counter‐ions. The first database of charge‐storing semiconductors is recently released, containing information from more than 50 publications within the past 40 years. Now, the database has been updated with more than 90 entries from the latest works on the topic. These materials have been largely utilized in the context of “dark photocatalysis”, that is, redox reactions enabled by photocharged semiconductors long after cessation of light irradiation. Nevertheless, a variety of further potential applications have not received enough visibility, including memory storage, steel anti‐corrosion, sensors, and micromotors. In this review, the key figures of merit of photocharged semiconductors and the empirical relationships found between them is highlighted. After showing the latest advances in dark photocatalysis, it is discussed how other application fields may benefit from these materials. For each area, promising research directions based on the findings from the database are recommended.

Funder

Max-Planck-Gesellschaft

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3