Modified Re‐Entrant‐Like (K, Na)NbO3‐Based Relaxors with Superior Electrostrain Properties

Author:

Wang Xin1,Sun Xi‐xi1,Yang Yuxuan2,Hao Xiaodong3,Lv Xiang1,Zhang Yang4,Ma Yinchang5,Zhang Xi‐xiang5,Wu Haijun2,Wu Jiagang1ORCID

Affiliation:

1. College of Materials Science and Engineering Sichuan University Chengdu 610065 P. R. China

2. State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 P. R. China

3. Electronic Materials Research Laboratory (Key Lab of Education Ministry) and School of Electronic and Information Engineering Xi'an Jiaotong University Xi'an 710049 China

4. School of Physical and Information Sciences Shaanxi University of Science & Technology Xi'an 710021 China

5. Division of Physical Science and Engineering King Abdullah University of Science and Technology Thuwal 23955–6900 Saudi Arabia

Abstract

AbstractPiezoceramics with large strain output, low hysteresis, and wide operation temperature are indispensable for the high‐end displacement control. Unfortunately, requiring these merits simultaneously remains a long‐standing challenge for lead‐free piezoceramics promising for replacing lead‐based ones. Herein a new strategy to resolve this challenge by developing modified re‐entrant‐like potassium sodium niobate ((K, Na)NbO3, KNN) relaxors is presented. Multi‐scale structural analysis reveals the presence of the significant local disorder, nano‐sized multi‐phase coexistence, and ultra‐fine grains, which facilitate the polarization rotation, effectively eliminate non‐180° domains, and erase polymorphic phase transition features in re‐entrant‐like KNN relaxors. Consequently, a combination of large strain (≈0.19%), ultra‐low hysteresis (<7%), high electrostriction coefficient (Q33 = 0.049 m4 C−2), and benign temperature stability (i.e., strain varies less than 10.6% within 30–120 °C) is realized, superior to other lead‐free relaxors. Therefore, this strategy provides a novel paradigm for designing high‐performance lead‐free piezoceramics used for high‐precision actuators.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Natural Science Foundation of Sichuan Province

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3