Affiliation:
1. School of Materials Science and Engineering Peking University Beijing 100871 China
2. School of Physics and Microelectronics Zhengzhou University Zhengzhou Henan 450001 China
3. Research Institute of Urbanization and Urban Safety School of Civil and Resource Engineering University of Science and Technology Beijing Beijing 100083 China
Abstract
AbstractLightweight strong aerogels have many applications, but they suffer from the trade‐off between key mechanical properties, and it remains challenging to realize superelastic aerogels simultaneously possessing high strength and excellent structural recovery. Herein, a strategy to overcome such a problem by designing a carbon nanotube (CNT)‐based aerogel consisting of flexible‐rigid core‐shell structure, which achieve a combination of excellent properties including superelasticity (complete recovery at 90%), high strength (over 12 MPa at 90%) and wide tunability (from 101 kPa to 4.5 MPa at 50% strain), is presented. It is found that the outer rigid but brittle amorphous carbon shells crosslink the CNT cores and crack into orderly distributed segments during the first compression cycle, while the flexible CNT cores ensure the integrity of the overall skeleton and tolerance to large deformation. This designed CNT composite sponges exhibit overall superior mechanical properties than previously reported foams/aerogels, and due to such unique crack‐induced superelasticity mechanism, potential applications such as pressure sensors with wide‐range tailored sensitivity and high‐performance energy absorbers have been developed. This flexible‐rigid core‐shell synergia may provide further insight for tunable high‐strength aerogel design and innovative applications.
Funder
National Natural Science Foundation of China
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献