Crack‐Induced Superelastic, Strength‐Tunable Carbon Nanotube Sponges

Author:

Ye Ziming1,Zhao Bo1,Wang Qi1,Chen Kun1,Su Man1,Xia Zhiyuan1,Han Lei2,Li Meng2,Kong Xiaobing1,Shang Yuanyuan2,Liang Jiyong3,Cao Anyuan1ORCID

Affiliation:

1. School of Materials Science and Engineering Peking University Beijing 100871 China

2. School of Physics and Microelectronics Zhengzhou University Zhengzhou Henan 450001 China

3. Research Institute of Urbanization and Urban Safety School of Civil and Resource Engineering University of Science and Technology Beijing Beijing 100083 China

Abstract

AbstractLightweight strong aerogels have many applications, but they suffer from the trade‐off between key mechanical properties, and it remains challenging to realize superelastic aerogels simultaneously possessing high strength and excellent structural recovery. Herein, a strategy to overcome such a problem by designing a carbon nanotube (CNT)‐based aerogel consisting of flexible‐rigid core‐shell structure, which achieve a combination of excellent properties including superelasticity (complete recovery at 90%), high strength (over 12 MPa at 90%) and wide tunability (from 101 kPa to 4.5 MPa at 50% strain), is presented. It is found that the outer rigid but brittle amorphous carbon shells crosslink the CNT cores and crack into orderly distributed segments during the first compression cycle, while the flexible CNT cores ensure the integrity of the overall skeleton and tolerance to large deformation. This designed CNT composite sponges exhibit overall superior mechanical properties than previously reported foams/aerogels, and due to such unique crack‐induced superelasticity mechanism, potential applications such as pressure sensors with wide‐range tailored sensitivity and high‐performance energy absorbers have been developed. This flexible‐rigid core‐shell synergia may provide further insight for tunable high‐strength aerogel design and innovative applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3