Rapid Construction of 3D Biomimetic Capillary Networks with Complex Morphology Using Dynamic Holographic Processing

Author:

Song Bowen1,Wang Chaowei1,Fan Shengying2,Zhang Leran1,Zhang Chenchu3,Xiong Wei4,Hu Yanlei1,Chu Jiaru1,Wu Dong1,Li Jiawen1ORCID

Affiliation:

1. CAS Key Laboratory of Mechanical Behavior and Design of Materials Department of Precision Machinery and Precision Instrumentation University of Science and Technology of China Hefei 230027 China

2. Laser Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan 250104 China

3. Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Institute of Industry & Equipment Technology Hefei University of Technology Hefei 230009 China

4. Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information Huazhong University of Science and Technology Wuhan 430074 China

Abstract

AbstractMicrovascular networks (MVNs) are crucial transportation systems in living creatures for nutrient distribution, fluid flow, energy transportation and so on. However, artificial manufacturing of MVNs, especially capillary networks with diameters (average 6 ≈ 9 µm), has always been a problem and bottleneck in tissue engineering due to the lack of efficient manufacturing methods. Herein, a dynamic holographic processing method is reported for producing 3D capillary networks with complex biomimetic morphologies. Combining the axial scanning of the focused beam and the dynamic display of holograms, biomimetic bifurcated microtubes, and porous microtubes with programmable morphologies are rapidly produced by two‐photon polymerization (TPP). As a proof‐of‐concept demonstration, porous microtubes are used as 3D capillary network scaffolds for culturing human umbilical vein endothelial cells (HUVECs) to facilitate the exchange of nutrients and metabolites. Endothelial cells around the vascular scaffolds manifest obvious tight connections and 3D coverage after 3 days in vitro, which reveals that the scaffolds play a significant role in the morphology of dense vascularization. This flexible and rapid method of producing capillary networks provides a versatile platform for vascular physiology, tissue regeneration, and other biomedical areas.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3