Multiple Surface Optimizations for a Highly Durable LiCoO2 beyond 4.6 V

Author:

Li Zijian1,Yi Haocong1,Ren Hengyu1,Fang Jianjun1,Du Yuhao1,Zhao Wenguang1,Chen Hui2,Zhao Qinghe1,Pan Feng1ORCID

Affiliation:

1. School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 China

2. School of Materials and Environmental Engineering Shenzhen Polytechnic Shenzhen 518055 P. R. China

Abstract

AbstractRecently, lots of researches have focused on enhancing the structure stability of LiCoO2 (LCO) at a cutoff voltage of 4.6 V (vs Li/Li+) at room temperature. However, the high temperature (≥45 °C) performances are more significant for practical applications. Herein, the mechanism of unsatisfactory structure stability of LCO at 45 °C via comparing a commercial LCO (C‐LCO) and a surface optimized LCO (O‐LCO) is revealed first. The deteriorated structure stability of LCO at 45 °C is mainly due to two aspects: i) the promoted bulk Li+ ion diffusion kinetics at 45 °C leads to a higher state of charge for the charged LCO, which triggers more side reactions; ii) the more prominent surface structure collapse at 45 °C blocks the Li+ ion transport channels. Surface optimizations, including the anions (F and PO43−) and cations (Al3+) surface modulation and a subsurface spinel reinforcement, are comprehensively applied to alleviate the side reaction and structure collapse issues of O‐LCO, leading to a high reversible discharge capacity of 238 mAh g−1, as well as an obviously enhanced cycle and floating stability at 45 °C and beyond 4.6 V. A new insight is provided here for developing more advanced and practical high‐voltage LCO.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3