Thermal Interface Hydrogel Composites Mechanically Compliant with Curvy Skins and Rigid Electronic Modules

Author:

Ji Donghwan1,Liu Paiting2,Im Pilseon1,Shin Sunmi2,Kim Jaeyun1345ORCID

Affiliation:

1. School of Chemical Engineering Sungkyunkwan University (SKKU) Suwon 16419 Republic of Korea

2. Department of Mechanical Engineering National University of Singapore (NUS) Singapore 117575 Singapore

3. Department of Health Sciences and Technology Samsung Advanced Institute for Health Sciences & Technology (SAIHST) Sungkyunkwan University (SKKU) Suwon 16419 Republic of Korea

4. Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University (SKKU) Suwon 16419 Republic of Korea

5. Institute of Quantum Biophysics (IQB) Sungkyunkwan University (SKKU) Suwon 16419 Republic of Korea

Abstract

AbstractThe evolution of wearable electronic devices has drawn attention to personal thermal management (PTM) technologies encompassing the sensing and regulation of body temperature and/or harnessing human body heat for energy harvesting. However, solid PTM devices encounter inherent limitations concerning thermal contact and mechanical compatibility with the human body. This study introduces a thermal interface hydrogel exhibiting high thermal conduction and mechanical compatibility with human skin. Employing a strategic design approach, the mechanical and thermal properties of the hydrogel are assessed. This hydrogel is a structured composite incorporating alumina microplatelets embedded layer‐by‐layer within a densified polymer matrix. Incorporating aligned alumina platelets in the layered structure, combined with a densified polymer matrix ensuring close contact and packing of polymer chains, enhances the thermal conductivity of the hydrogel. Simultaneously, it maintains mechanical flexibility and robustness. Subsequently, the resulting hydrogel is showcased as a thermal interface material sandwiched between flexible human skin and a rigid Peltier module for a cooling device affixed to the human skin. Anticipated applications of the hydrogel‐based thermal interface material include advanced bioelectronics with added functionalities in PTM, all without inducing mechanical or physical discomfort.

Funder

Ministry of Education - Singapore

Ministry of Science and ICT, South Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3