Enhanced Fill Factor and Power Conversion Efficiency of Single Oxide Ferroelectric Photovoltaic Devices with Designed Nanostructures

Author:

Gao Chang1,Li Weili12,Jing Lu1,Wang Zhao1,Shi Lei1,Sheng Jie13,Wang Lidong1,Zhao Yu13,Fei Weidong14ORCID

Affiliation:

1. School of Materials Science and Engineering Harbin Institute of Technology Harbin 150001 P. R. China

2. National Key Laboratory of Science and Technology on Precision Heat Processing of Metals Harbin Institute of Technology Harbin 150001 P. R. China

3. Laboratory for Space Environment and Physical Science Research Center of Basic Space Science Harbin Institute of Technology Harbin 150001 P. R. China

4. State Key Laboratory of Advanced Welding and Joining Harbin Institute of Technology Harbin 150001 P. R. China

Abstract

AbstractThe ferroelectric photovoltaic effect has promising potential for the next generation of solar cells. However, due to disadvantages such as wide bandgap and low fill factor (FF), the power conversion efficiency (PCE) values reported in ferroelectric photovoltaic devices remain considerably below expectations. Herein, enhanced photovoltaic effect in the films with the nanostructure of ferroelectric nanocrystalline particles embedded in the amorphous or poor crystalline matrix is investigated. The nanostructures are realized by controlled crystallization and doping in Zn0.92‐xCux(Fe0.04Li0.04)O (ZCFLO) films. Benefiting from the improved carrier dynamic regulation in ferroelectric/boundary nanostructures and narrowed bandgap, the designed ZCFLO photoferroelectrics films exhibit high efficiency photovoltaic effect under AM 1.5G light, manifesting above‐bandgap photovoltage, markedly improved FF (83.4%), switchable photoresponse (50.3 mA W−1), and high PCE (14.4%). Meanwhile, the simple method presented in this work is fully compatible with large‐scale manufacturing processes and may find applications in cost‐efficiency optoelectronic devices.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3