Interfacial Reaction Enhanced Liquid‐Phase Sintering of Metal/Oxide Soft Magnetic Composite

Author:

Bai Guohua1ORCID,Liu Junhong1,Bandaru Sateesh1,Li Zhong1,Sun Jiayi1,Zhang Yanan1,Zhang Zhenhua1,Liu Xiaolian1,Li Hongxia1,Chen Junfu2,Zhang Xuefeng1ORCID

Affiliation:

1. Institute of Advanced Magnetic Materials College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310012 China

2. China‐Ukraine Institute of Welding Guangdong Academy of Sciences Guangdong Provincial Key Laboratory of Advanced Welding Technology Guangzhou 510650 China

Abstract

AbstractSoft magnetic composites (SMCs) are ungently demanded in high‐frequency power electronics for their large magnetization and high electrical resistivity. However, traditional cold‐pressed SMCs are faced with low mechanical strength and insulation instability, which severely restricts their applications. In this study, liquid‐phase sintering techniques to prepare FeSiAl/MoO3 SMCs are orginally employed, where consolidation and insulation of metallic magnetic particles are achieved in one step. The redox reaction between FeSiAl and MoO3 melt greatly reduces the interfacial energy, facilitates fully wetting of FeSiAl particles by MoO3 melt, and promotes the densification process during sintering. In the final FeSiAl/MoO3 SMC, FeSiAl particles are bonded covalently and insulated electrically/magnetically by the resultant Al2O3 transition layer, endowing the SMC with high crushing strength of 250 MPa, cut‐off frequency of 110 MHz, permeability of 35 (@1 MHz), and low power loss of 962 kW m−3 (5 MHz, 5 mT). This study provides alternative concept for designing new SMCs, and broadens the connotation and extension of liquid‐phase sintering.

Funder

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3