Magnetic Supraparticles Capable of Recording High‐Temperature Events

Author:

Wolf Andreas12ORCID,Sauer Julian1,Hurle Katrin3ORCID,Müssig Stephan1,Mandel Karl12ORCID

Affiliation:

1. Department of Chemistry and Pharmacy Professorship for Inorganic Chemistry Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Egerlandstraße 1 91058 Erlangen Germany

2. Fraunhofer Institute for Silicate Research ISC Neunerplatz 2 97082 Wuerzburg Germany

3. GeoZentrum Nordbayern Mineralogy Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Schlossgarten 5A 91054 Erlangen Germany

Abstract

AbstractSuperparamagnetic iron oxide nanoparticles (SPIONs) are prone to oxidation at elevated temperatures (>300 °C) and lose their magnetizability upon transition from magnetite/maghemite (γ‐Fe2O3 / Fe3O4) to hematite (α‐Fe2O3). Silica (SiO2) shells can effectively prevent this undesired effect up to ≈1000 °C. Herein, the study shows how to utilize SPIONs with varying SiO2 shell thickness and thus, different oxidation susceptibility, and how to combine them in micrometers sized assemblies – so‐called supraparticles (SPs), to create a structurally emerging magnetic temperature recording functionality. The desired oxidation of non or weakly‐protected SPIONs within SPs upon temperature events reduces dipole–dipole interactions of well‐protected SPIONs in the confined SP entity. The resulting change of magnetic interactions therefore contains information on the thermal history of the SP, which can be spectrally read out via magnetic particle spectroscopy within seconds. Their working range can be tuned from 400 to 1000 °C on two independent structural hierarchy levels, namely the SiO2 shell thickness and the freely selectable ratios of different building blocks in the SP. The application of such SPs as particulate additives for magnetic recording of high‐temperature events, especially relevant in metal, alloy, and ceramic processing, representing a yet unexplored and optically‐independent option for bulk temperature recording is proposed.

Funder

European Commission

Bundesministerium für Bildung und Forschung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3