On‐Chip Reconstitution of Uniformly Shear‐Sensing 3D Matrix‐Embedded Multicellular Blood Microvessel

Author:

Vo Quoc1ORCID,Carlson Kaely A.2,Chiknas Peter M.1,Brocker Chad N.3,DaSilva Luis3,Clark Erica3,Park Sang Ki3,Ajiboye A. Seun3,Wier Eric M.3,Benam Kambez H.124ORCID

Affiliation:

1. Division of Pulmonary Allergy and Critical Care Medicine Department of Medicine University of Pittsburgh Pittsburgh PA 15213 USA

2. Department of Bioengineering University of Pittsburgh Pittsburgh PA 15219 USA

3. Center for Tobacco Products U.S. Food and Drug Administration Silver Spring MD 20993 USA

4. Vascular Medicine Institute University of Pittsburgh Pittsburgh PA 15213 USA

Abstract

AbstractPreclinical human‐relevant modeling of organ‐specific vasculature offers a unique opportunity to recreate pathophysiological intercellular, tissue‐tissue, and cell‐matrix interactions for a broad range of applications. Here, this work presents a reliable, and simply reproducible process for constructing user‐controlled long rounded extracellular matrix (ECM) embedded vascular microlumens on‐chip for endothelization and co‐culture with stromal cells obtained from human lung. This work demonstrates the critical impact of microchannel cross‐sectional geometry and length on uniform distribution and magnitude of vascular wall shear stress, which is key when emulating in vivo observed blood flow biomechanics in health and disease. In addition, this study provides an optimization protocol for multicellular culture and functional validation of the system. Moreover, this study shows the ability to finely tune rheology of the three‐dimensional natural matrix surrounding the vascular microchannel to match pathophysiological stiffness. In summary, this work provides the scientific community with a matrix‐embedded microvasculature on‐chip populated with all‐primary human‐derived pulmonary endothelial cells and fibroblasts to recapitulate and interrogate lung parenchymal biology, physiological responses, vascular biomechanics, and disease biogenesis in vitro. Such a mix‐and‐match synthetic platform can be feasibly adapted to study blood vessels, matrix, and ECM‐embedded cells in other organs and be cellularized with additional stromal cells.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3