The Impact of Lattice Distortions on the Magnetic Stability of Single Atoms: Dy and Ho on BaO(100)

Author:

Sorokin Boris V.1,Pivetta Marina1,Bellini Valerio2,Merk Darius1,Reynaud Sébastien1,Barla Alessandro3,Brune Harald1,Rusponi Stefano1ORCID

Affiliation:

1. Institute of Physics Ecole Polytechnique Fédérale de Lausanne (EPFL) Station 3 CH‐1015 Lausanne Switzerland

2. S3‐Istituto di Nanoscienze‐CNR Via Campi 213/A I‐41125 Modena Italy

3. Istituto di Struttura della Materia (ISM) Consiglio Nazionale delle Ricerche (CNR) I‐34149 Trieste Italy

Abstract

AbstractX‐ray magnetic circular dichroism, atomic multiplet simulations, and density functional theory calculations are employed to identify criteria for the optimum combination of supporting alkaline earth oxide and adsorption site maximizing the spin lifetimes of lanthanide single‐atom magnets. Dy and Ho atoms adsorbed on BaO(100) thin films on Pt(100) are characterized and compared with previous results for the same two elements on MgO/Ag(100). Dy shows hysteresis in magnetic fields up to ≈3.5 T and long spin lifetime, exceeding 300 s at 2.5 K and 0.5 T. Dy displays superior magnetic stability on the bridge site than on the top‐O site. Surprisingly, Ho shows paramagnetism, as opposed to its long spin lifetime on MgO. These differences originate from the local surface distortions induced by the adatoms. On MgO, minimal distortions involve only the closest O atoms, while, on BaO, they affect both the closest anions and cations. This trend reflects the decrease of the lattice energy along the series of the alkaline earth oxides, going from MgO to BaO. This study represents a step ahead in the understanding of the factors determining the spin dynamics of surface‐adsorbed single‐atom magnets in order to achieve their operation as qubits and memories.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3