Auto‐Pressurized Multi‐Stage Tesla‐Valve Type Microreactors in Carbon Monoliths Obtained Through 3D Printing: Impact of Design on Fluid Dynamics and Catalytic Activity

Author:

Parra‐Marfil Adriana12,Aguilar‐Madera Carlos Gilberto3,Pérez‐Cadenas Agustín Francisco1,Carrasco‐Marín Francisco1,Gutiérrez‐Reina Saúl Omar2,Bueno‐López Agustín4,Ocampo‐Pérez Raúl2,Bailón‐García Esther1ORCID

Affiliation:

1. Materiales Polifuncionales Basados en Carbono (UGR‐Carbon) Departamento Química Inorgánica – Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente – Universidad de Granada (UEQ‐UGR) Granada ES 18071 Spain

2. Centro de Investigación y Estudios de Posgrado (CIEP), Facultad de Ciencias Químicas Universidad Autónoma de San Luis Potosí (FCQ‐UASLP) San Luis Potosí MX 78260 México

3. Facultad de Ciencias de la Tierra Universidad Autónoma de Nuevo León (UANL) Carretera a Cerro Prieto Km. 8 Ex Hacienda de Guadalupe Linares MX 67700 México

4. Departamento de Química Inorgánica Universidad de Alicante (UA) Alicante ES 03080 Spain

Abstract

AbstractThe present research exploits an innovative methodology for producing auto‐pressurized carbon microreactors with a precise and controlled structure analyzing the influence of their design on the fluid dynamics and their catalytic performance. Carbon monoliths with Tesla‐valve shape channels (Tesla, T, and modified Tesla, Tm) are synthesized through the combination of 3D printing and sol–gel process and further probed as Ni/CeO2 supports on CO2 methanation. The experimental results and mathematical modeling corroborated the improved performance obtained through the complex design compared to a conventional one. In addition to chaotic fluid flow induced by the deviation in flow direction, which improves the reagents‐active phase interaction, local pressure increases due to convergence of flows may enhance the Sabatier reaction according to Le Châtelier's principle. Conversely to straight channels, T and Tm are not affected by flow rate and presented chemical control. Tesla‐valve with curved angle (Tm) improved the mass transfer, achieving higher conversion and ≈30% reaction rate increase regarding right angle (T). Thus, this auto‐pressurized multi‐stage Tesla‐valve monolith opens the gate to design specific and advanced functional materials for multitude chemical reactions where not only the reactant‐active phase contact can be maximized but also the reaction conditions can be controlled to maximize the reaction kinetics.

Funder

Generalitat Valenciana

Consejo Nacional de Ciencia y Tecnología

Ministerio de Ciencia e Innovación

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3