Constructing a Multifunctional Interlayer toward Ultra‐High Critical Current Density for Garnet‐Based Solid‐State Lithium Batteries

Author:

Gao Min1,Gong Zhinan1,Li Hongqiang1,Zhao Haibin1,Chen Daming1ORCID,Wei Yaqing1,Li De1,Li Yuanxun2,Yang Liang1,Chen Yong3

Affiliation:

1. State Key Laboratory of Marine Resource Utilization in South China Sea School of Materials Science and Engineering Hainan Provincial Key Laboratory of Research on Utilization of Si‐Zr‐Ti Resources Hainan University Haikou 570228 P. R. China

2. State Key Laboratory of Electronic Thin Films and Integrated Devices University of Electronic Science and Technology of China Chengdu 610054 P. R. China

3. Guangdong Key Laboratory for Hydrogen Energy Technologies School of Materials Science and Hydrogen Energy Foshan University Foshan 528000 P. R. China

Abstract

AbstractAll‐solid‐state lithium batteries (ASSLBs), exhibiting great advantages of high energy density and safety, are proposed to be the next generation energy storage system. However, the successful commercialization of garnet‐based ASSLBs is hindered by the poor contact between solid‐state electrolytes (Li6.25Ga0.25La3Zr2O12, LGLZO) and lithium anode, as well as low critical current density (CCD). Herein, an indium tin oxide (ITO) layer is prepared on LGLZO by ultrasonic spraying technique, where ITO reacts with molten lithium to form a composite interlayer, consisting of Li13In3, Li2O, and LiInSn. Experiments and density functional theory calculations demonstrate that such a unique interlayer plays a multifunctional role in achieving simultaneously better interface wettability, uniform Li deposition, and dendrite suppression at Li/LGLZO interface. Consequently, the CCD of ITO‐treated symmetric cell is increased to a record‐high value of 12.05 mA cm−2 at room temperature, which is expected to promote practical application of ASSLBs. Moreover, the Li/ITO@LGLZO/Li cell exhibits a low interfacial resistance of only 5.9 Ω cm2 and performs stable electrochemical operations for over 2000 h at 2 mA cm−2. The Li/ITO@LGLZO/LiFePO4 full cell also delivers superior electrochemical performances, demonstrating the efficiency of the ITO layer.

Funder

Key Research and Development Project of Hainan Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3