Affiliation:
1. State Key Laboratory of Marine Resource Utilization in South China Sea School of Materials Science and Engineering Hainan Provincial Key Laboratory of Research on Utilization of Si‐Zr‐Ti Resources Hainan University Haikou 570228 P. R. China
2. State Key Laboratory of Electronic Thin Films and Integrated Devices University of Electronic Science and Technology of China Chengdu 610054 P. R. China
3. Guangdong Key Laboratory for Hydrogen Energy Technologies School of Materials Science and Hydrogen Energy Foshan University Foshan 528000 P. R. China
Abstract
AbstractAll‐solid‐state lithium batteries (ASSLBs), exhibiting great advantages of high energy density and safety, are proposed to be the next generation energy storage system. However, the successful commercialization of garnet‐based ASSLBs is hindered by the poor contact between solid‐state electrolytes (Li6.25Ga0.25La3Zr2O12, LGLZO) and lithium anode, as well as low critical current density (CCD). Herein, an indium tin oxide (ITO) layer is prepared on LGLZO by ultrasonic spraying technique, where ITO reacts with molten lithium to form a composite interlayer, consisting of Li13In3, Li2O, and LiInSn. Experiments and density functional theory calculations demonstrate that such a unique interlayer plays a multifunctional role in achieving simultaneously better interface wettability, uniform Li deposition, and dendrite suppression at Li/LGLZO interface. Consequently, the CCD of ITO‐treated symmetric cell is increased to a record‐high value of 12.05 mA cm−2 at room temperature, which is expected to promote practical application of ASSLBs. Moreover, the Li/ITO@LGLZO/Li cell exhibits a low interfacial resistance of only 5.9 Ω cm2 and performs stable electrochemical operations for over 2000 h at 2 mA cm−2. The Li/ITO@LGLZO/LiFePO4 full cell also delivers superior electrochemical performances, demonstrating the efficiency of the ITO layer.
Funder
Key Research and Development Project of Hainan Province
National Natural Science Foundation of China
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献