Affiliation:
1. State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
2. Department of Chemistry University at Buffalo State University of New York Buffalo New York 14260 USA
Abstract
AbstractThe two‐electron pathway to form hydrogen peroxide (H2O2) is undesirable for the oxygen reduction reaction (ORR) in iron and nitrogen doped carbon (Fe–N–C) material as it not only lowers the catalytic efficiency but also impairs the catalyst durability. In this study, a relay catalysis pathway is designed to minimize the two‐electron selectivity of Fe–N–C catalyst. Such a design is achieved by introducing two other sites, that is, MnN4 site and α‐Fe(110) face. A combination of transmission electron microscopy image and X‐ray absorption spectra verify the three site formation. Electrochemical test coupled with post‐treatment confirm the improvement of MnN4 site and α‐Fe(110) face on catalyst performance. Theoretical calculation proposes a relay catalysis pathway of three sites, that is, H2O2 released from the FeN4 site migrates to the MnN4 site or α‐Fe(110) face, on which the captive H2O2 is further reduced to H2O. The relay catalysis pathway positioned the as‐prepared catalyst among the best ORR catalysts in both aqueous electrode and alkaline direct methanol fuel cell test. This study examples an interesting relay catalysis pathway of multi‐sites for the ORR, which offers insights into the design of efficient electrocatalysts for fuel cells or beyond.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献