Highly Circularly Polarized Light‐Sensitive Chiral One‐Dimensional Perovskites Enabled by Antisolvent Engineering

Author:

Yang Seongyeon1,Jang Gyumin1,Lee Chan Uk1,Son Jaehyun1,Lee Junwoo1,Jeong Wooyong1,Roe Dong Gue2,Cho Jeong Ho2,Moon Jooho1ORCID

Affiliation:

1. Department of Materials Science and Engineering Yonsei University 50 Yonsei‐ro Seodaemun‐gu Seoul 03722 Republic of Korea

2. Department of Chemical and Biomolecular Engineering Yonsei University 50 Yonsei‐ro Seodaemun‐gu Seoul 03722 Republic of Korea

Abstract

AbstractChiral perovskites have emerged as promising next‐generation materials for polarization detection due to their excellent circularly polarized light (CPL) detection capabilities. However, they suffer from a low chiroptical response when fabricated as a polycrystalline thin film, limiting their potential range of applications. Herein, it is demonstrated that antisolvent dripping during the spin‐coating process can effectively improve the chiroptical properties of polycrystalline chiral perovskite thin films. Systematic analysis with different antisolvents reveals that the highly polar antisolvent chloroform interacts with dimethyl sulfoxide molecules via hydrogen bonding. This strong hydrogen bonding suppresses the formation of intermediate and secondary phases and accelerates the crystallization of chiral 1D perovskites, thus reducing the density of the iodine vacancies inside the perovskite thin films. The lower density of iodine vacancies also intensifies the asymmetric tilting inorganic distortion of PbI6 octahedrons, enhancing the chiroptical response of the fabricated chiral perovskite material. Photodetectors based on the chloroform‐treated chiral perovskite films achieve a remarkably high distinguishability of 0.31, outperforming previously reported photodetectors based on the chiral perovskites. The fabricated photodetectors also exhibit outstanding responsivity and detectivity with enhanced operational stability.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3