Doped/Undoped A1‐A2 Typed Copolymers as ETLs for Highly Efficient Organic Solar Cells

Author:

Yang Lisi12,Shen Shuaishuai2,Chen Xiang3,Wei Huan4,Xia Dongdong3,Zhao Chaowei3,Zhang Ningfang2,Hu Yuanyuan4,Li Weiwei5,Xin Hao1,Song Jinsheng2ORCID

Affiliation:

1. Key Laboratory for Organic Electronics and Information Displays Institute of Advanced Materials Nanjing University of Posts & Telecommunications Nanjing 210023 P. R. China

2. Engineering Research Center for Nanomaterials Henan University Kaifeng 475004 P. R. China

3. Institute of Applied Chemistry Jiangxi Academy of Sciences Nanchang 330096 P. R. China

4. International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province School of Physics and Electronics Hunan University Changsha 410082 P. R. China

5. Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 P. R. China

Abstract

AbstractThe electron transport layer (ETL) is a critical component in achieving high device performance and stability in organic solar cells. Conjugated polyelectrolytes (CPEs) have become an attractive alternative due to film‐forming properties and ease of preparation. However, p‐type CPEs generally exhibit poor charge mobility and conductivity, incorporation of electron‐withdrawing units forming alternated D‐A conjugated backbone can make up for these deficiencies. Herein, the ratio of electron withdrawing moieties are further increased and two poly(A1‐alt‐A2) typed PIIDNDI‐Br and PDPPNDI‐Br based on the combination of naphthalene diimide (NDI) with isoindigo (IID) or diketopyrrolopyrrole (DPP) via direct arylation polycondensation are synthesized. These CPEs possess excellent alcohol solubility, a suitable lowest unocuppied molecular orbital energy level, and work function tunability. Surprisingly, the incorporation of IID and DPP units generate distinct self‐doping behaviors, which are confirmed by UV–vis absorption and ESR spectra. However, no matter doped or undoped, both CPEs present better charge‐transporting properties and conductivity when utilized as ETLs. The PIIDNDI‐Br and PDPPNDI‐Br display good universal compatibility with the blend of PM6:Y6 and PM6:L8‐BO, and PCEs of 18.32% and 18.36% are obtained, respectively, which also present excellent storage stability. In short, the combination of two different acceptors demonstrates an efficient strategy to design highly efficient ETLs for high performance photovoltaic devices.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Henan Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3