Highly Conductive MXene/PEDOT:PSS‐Integrated Poly(N‐Isopropylacrylamide) Hydrogels for Bioinspired Somatosensory Soft Actuators

Author:

Xue Pan1,Valenzuela Cristian1,Ma Shaoshuai1,Zhang Xuan1,Ma Jiazhe1,Chen Yuanhao1,Xu Xinhua1,Wang Ling1ORCID

Affiliation:

1. School of Materials Science and Engineering Tianjin University Tianjin 300350 China

Abstract

AbstractSophisticated sensing and actuation capabilities of many living organisms in nature have inspired scientists to develop biomimetic somatosensory soft robots. Herein, the design and fabrication of homogeneous and highly conductive hydrogels for bioinspired somatosensory soft actuators are reported. The conductive hydrogels are synthesized by in situ copolymerization of conductive surface‐functionalized MXene/Poly(3,4‐ethylenedioxythiophene)/poly(styrenesulfonate) ink with thermoresponsive poly(N‐isopropylacrylamide) hydrogels. The resulting hydrogels are found to exhibit high conductivity (11.76 S m−1), strain sensitivity (GF of 9.93), broad working strain range (≈560% strain), and high stability after over 300 loading–unloading cycles at 100% strain. Importantly, shape‐programmable somatosensory hydrogel actuators with rapid response, light‐driven remote control, and self‐sensing capability are developed by chemically integrating the conductive hydrogels with a structurally colored polymer. As the proof‐of‐concept illustration, structurally colored hydrogel actuators are applied for devising light‐driven programmable shape‐morphing of an artificial octopus, an artificial fish, and a soft gripper that can simultaneously monitor their own motions via real‐time resistance variation. This work is expected to offer new insights into the design of advanced somatosensory materials with self‐sensing and actuation capabilities, and pave an avenue for the development of soft‐matter‐based self‐regulatory intelligence via built‐in feedback control that is of paramount significance for intelligent soft robotics and automated machines.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

Natural Science Foundation of Tianjin Municipal Science and Technology Commission

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3