Functional Polymer Thin Films for Establishing an Effective Electrode Interface in Sulfide‐Based Solid‐State Batteries

Author:

Cho Sungjin1,Kim Youson2,Song Youngjin1,Ryu Jin2,Choi Keonwoo2,Yang Junyeong2,Lee Se‐Hee3,Im Sung Gap2,Park Soojin1ORCID

Affiliation:

1. Department of Chemistry Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro, Nam‐gu Pohang 37673 Republic of Korea

2. Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea

3. Department of Mechanical Engineering University of Colorado at Boulder Boulder CO 80309 USA

Abstract

AbstractSulfide solid electrolytes (SSEs) have garnered significant attention for their high ionic conductivity in the development of all‐solid‐state batteries (ASSBs). However, SSEs face challenges due to poor chemical and electrochemical stability, leading to SE decomposition at the anode, which in turn increases internal resistance and reduces cycle performance. Herein, to address this issue, thin polymer layers are applied to prevent direct contact between the SSE and anode using the initiated chemical vapor deposition process. This method facilitates the uniform coating of eight types of polymers with polar functionalities on indium (In) anodes. Half‐cell tests and X‐ray photoelectron spectroscopy analysis reveals that poly(acrylic acid) and poly((perfluorohexyl)ethyl acrylate), containing ─COOH and C─F bonds respectively, effectively stabilized the In/SSE interface. In full cells assembled with polymer‐coated In and LiNi0.8Co0.1Mn0.1O2 (NCM811), capacity retention show remarkable improvement, achieving 64.8% for In@pAA and 50.7% for In@pC6FA after 100 cycles, compared to 29.0% for bare In. This study provides insights into the interaction between polar bonds in polymers and SSEs, potentially bridging a significant knowledge gap resulting from the significant lack of research investigating the relationship between polymers, one of the primary materials commonly used in ASSBs.

Funder

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3