Affiliation:
1. MESA+ Institute of Nanotechnology University of Twente Enschede 7500AE The Netherlands
2. Institute of Micro‐ & Nanostructure Research (INM) and Centre of Nanoanalysis and Electron Microscopy (CENEM) Friedrich‐Alexander‐Universitaet Erlangen‐Nurenberg 91058 Erlangen Germany
3. Dipartimento di Chimica Universita degli Study di Pavia Pavia 27100 Italy
Abstract
AbstractSolid‐state dewetting is the heat‐induced agglomeration of thin metal films into defined nanoparticles (NPs). Dewetted Pt nanoparticles are investigated on F‐doped SnO2 (FTO) substrates as model binder‐free electrodes for the hydrogen evolution reaction (HER). Dewetting of Pt films into particles exposes the FTO substrate and the metal/support (Pt‐FTO) contact line. Despite the decrease in Pt electrochemical surface area (ECSA) upon dewetting, dewetted NPs show a >3‐fold increase in ECSA‐normalized HER activity compared to as‐deposited nanocrystalline Pt films. Electrodes designed with dewetted Pt NPs of different sizes show that the HER activity does not only correlate with the ECSA but also increases with increasing the Pt‐FTO contact line length. The smaller the NPs, the larger the Pt‐FTO contact line, and the higher the activity. This effect is ascribed to electronic metal‐support interaction (EMSI), due to electron transfer from FTO to Pt. It is proposed that EMSI effects alter the electronic structure of Pt sites near the Pt‐FTO contact line, facilitating the H2 evolution kinetics. When NPs are a few nm‐sized, a large mass fraction of Pt is affected by EMSI, resulting in a further increase of HER activity compared to NPs ≥10 nm despite the lower ECSA.
Funder
European Synchrotron Radiation Facility
Deutsche Forschungsgemeinschaft
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献